Künstliche Intelligenz (KI) kann in Antriebssystemen effektiv eingesetzt werden, um vorausschauende Wartungsentscheidungen zu treffen. Diese basieren auf grossen Datensätzen, die in Echtzeit in den Servomotoren und -verstärkern erfasst und verarbeitet werden.
Ein Artikel der Firma Omni Ray
Am effektivsten sind Wartungen, wenn sie vorausschauend und proaktiv erfolgen, also genau dann, wenn sie auch wirklich nötig sind. Mit KI sind Unternehmen in der Lage, ihre Wartungsentscheidungen anhand von fundierten Prognosemodellen, Echtzeitdaten und Anlagentrends zu optimieren.
Bei der Instandhaltung von Servosystemen bietet eine solche Wartungsstrategie entscheidende Vorteile. Denn während Servomotoren und -verstärker generell sehr langlebig sind, müssen die damit verbundenen mechanischen Teile regelmäßig gewartet werden.
Unternehmen, die Bauteile basierend auf deren tatsächlichem Zustand ersetzen, vermeiden so das Austauschen von Teilen, die noch kaum Verschleisserscheinungen vorweisen. Ist das Gegenteil der Fall und Teile werden stärker abgenutzt als erwartet, kann eine vorausschauende Wartung sogar kostspielige Stillstandszeiten und Schäden an Maschinen vorbeugen.
Servoanwendungen vorausschauend warten
Mit einer zustandsorientierten Wartungsstrategie ist es möglich, so gut wie alle mechanischen Systeme und Komponenten in Echtzeit zu überwachen. Integrierte Sensoren an Servoverstärkern und -motoren liefern dabei einen genauen Überblick über den Zustand der internen Komponenten. Ausserdem werden so auch mit den Antrieben verbundene mechanische Bauteile wie Kugelumlaufspindeln, Riemen und Getriebe überwacht, die anfälliger sind und deshalb öfter instandgesetzt oder ersetzt werden müssen.
Durch die Übermittlung dieser Informationen an die im Servoverstärker integrierten KI-gestützten Prognosemodelle ist es möglich, Anomalien in den Servosystemen zu identifizieren und potenzielle Probleme frühzeitig zu erkennen. Mithilfe dieser umsetzbaren Erkenntnisse werden Abnutzungserscheinungen genau zum richtigen Zeitpunkt behoben – bevor es zu Ausfällen kommt, aber nur dann, wenn es auch nötig ist.
Um diesen Wartungsansatz erfolgreich umsetzen zu können, müssen grosse Mengen an gerätespezifischen Daten aus Servoantrieben vorliegen, die in die KI-Simulationen eingespeist werden. Diese bestimmen die Qualität des Modells, sprich dessen Genauigkeit, Empfindlichkeit und Präzision. Für einzelne Benutzer ist es allerdings oft schwierig, die benötigten Informationen zu generieren und zu sammeln. Unternehmen profitieren deshalb enorm von der jahrzehntelangen (datengestützten) Erfahrung eines Automatisierungsanbieters.
Künstliche Intelligenz (KI) kann in Antriebssystemen effektiv eingesetzt werden, um vorausschauende Wartungsentscheidungen zu treffen. Diese basieren auf grossen Datensätzen, die in Echtzeit in den Servomotoren und -verstärkern erfasst und verarbeitet werden.
Ein Artikel der Firma Omni Ray
Am effektivsten sind Wartungen, wenn sie vorausschauend und proaktiv erfolgen, also genau dann, wenn sie auch wirklich nötig sind. Mit KI sind Unternehmen in der Lage, ihre Wartungsentscheidungen anhand von fundierten Prognosemodellen, Echtzeitdaten und Anlagentrends zu optimieren.
Bei der Instandhaltung von Servosystemen bietet eine solche Wartungsstrategie entscheidende Vorteile. Denn während Servomotoren und -verstärker generell sehr langlebig sind, müssen die damit verbundenen mechanischen Teile regelmäßig gewartet werden.
Unternehmen, die Bauteile basierend auf deren tatsächlichem Zustand ersetzen, vermeiden so das Austauschen von Teilen, die noch kaum Verschleisserscheinungen vorweisen. Ist das Gegenteil der Fall und Teile werden stärker abgenutzt als erwartet, kann eine vorausschauende Wartung sogar kostspielige Stillstandszeiten und Schäden an Maschinen vorbeugen.
Servoanwendungen vorausschauend warten
Mit einer zustandsorientierten Wartungsstrategie ist es möglich, so gut wie alle mechanischen Systeme und Komponenten in Echtzeit zu überwachen. Integrierte Sensoren an Servoverstärkern und -motoren liefern dabei einen genauen Überblick über den Zustand der internen Komponenten. Ausserdem werden so auch mit den Antrieben verbundene mechanische Bauteile wie Kugelumlaufspindeln, Riemen und Getriebe überwacht, die anfälliger sind und deshalb öfter instandgesetzt oder ersetzt werden müssen.
Durch die Übermittlung dieser Informationen an die im Servoverstärker integrierten KI-gestützten Prognosemodelle ist es möglich, Anomalien in den Servosystemen zu identifizieren und potenzielle Probleme frühzeitig zu erkennen. Mithilfe dieser umsetzbaren Erkenntnisse werden Abnutzungserscheinungen genau zum richtigen Zeitpunkt behoben – bevor es zu Ausfällen kommt, aber nur dann, wenn es auch nötig ist.
Um diesen Wartungsansatz erfolgreich umsetzen zu können, müssen grosse Mengen an gerätespezifischen Daten aus Servoantrieben vorliegen, die in die KI-Simulationen eingespeist werden. Diese bestimmen die Qualität des Modells, sprich dessen Genauigkeit, Empfindlichkeit und Präzision. Für einzelne Benutzer ist es allerdings oft schwierig, die benötigten Informationen zu generieren und zu sammeln. Unternehmen profitieren deshalb enorm von der jahrzehntelangen (datengestützten) Erfahrung eines Automatisierungsanbieters.
Datenanalyse seit 1987
Im Jahr 1987 führte Mitsubishi Electric seinen ersten vollständig digitalen Servoverstärker ein. Seitdem sammelt das Unternehmen Betriebsdaten mit und über seine Servos und deren Peripheriegeräte. Diese Informationen bilden die Grundlage für ein tiefgreifendes Verständnis aller mechanischen Systeme, die von seinen Motoren angetrieben werden.
Mithilfe dieses umfassenden Datenspeichers entwickelte Mitsubishi Electric ein fortschrittliches Diagnosetool für die vorausschauende Wartung seiner neuesten Servomotoren und -verstärker der Melservo MR-J5-Serie. Diese Lösung nutzt die unternehmenseigene Deep-Learning-KI-Technologie Maisart (Mitsubishi Electric’s AI creates the State-of-the-ART in Technology), um zum Beispiel die Abnutzung mechanischer Komponenten zu erkennen, bevor eine Wartung erforderlich ist.
Dieses Konzept zur vorausschauenden Wartung basiert auf ‘Deep Reinforcement Learning‘. Hierbei handelt es sich um eine KI-Anwendung, die Daten automatisch verarbeitet und so selbstständig lernt, Muster und Anomalien zu erkennen. Anwender können so in kürzester Zeit ein intelligentes Set-up implementieren, ohne dass sie über fortgeschrittene Kenntnisse in Programmierung oder maschinellem Lernen verfügen müssen.
Vor allem aber orientiert sich das Wissen an dem individuellen System, in dem die Servos eingesetzt werden. Verschiedene Anwendungen haben alle ihren eigenen optimalen Anlagenzustand. Die KI bestimmt die idealen Betriebsparameter und ‑bedingungen sowie jegliches Verhalten, das als Anomalie betrachtet werden soll.
Ergänzt werden diese Fähigkeiten durch die Netzwerktechnologie CC-Link IE TSN mit Gigabit-Bandbreite und Time-Sensitive Networking (TSN)-Funktionalitäten. Dadurch sind die Servoantriebe in der Lage grosse Datenmengen für zeitkritische Steuerungsaufgaben sowie weniger flüchtige KI-Analyseinformationen zeitnah und ohne Verzögerungen zu übertragen.
Vielseitige Servos für optimierte Produktionsprozesse
Die Melservo MR-J5 Servos optimieren allerdings nicht nur die Wartungsaktivitäten. Sie sind zudem darauf ausgelegt, die Produktivität und Energieeffizienz in einer Vielzahl von Anwendungen zu maximieren. Beispielsweise umfassen sie ein Portfolio von schnellen, extrem leistungsstarken Motoren mit minimaler Baugrösse, die eine maximale Geschwindigkeit von 6.700 U/min erreichen können. Die Produktpalette umfasst ausserdem kompakte Servoverstärker mit einem Drehzahl-/Frequenz-Ansprechverhalten von 3,5 kHz und Kommunikationszyklen von 31,25 μs. Um Energie zu sparen, ist der MR-J5D Verstärker zudem mit einer Rückspeiseeinheit ausgestattet. So werden der Stromverbrauch und die Umweltbelastung von servobasierten Anwendungen reduziert.
Durch die Kombination von innovativer Wartung, Leistung und Effizienz optimieren die neuesten Servosysteme von Mitsubishi Electric wichtige Produktionsprozesse. Zudem minimieren sie Stillstandszeiten und verbessern die Produktivität. Indem sie modernste Datenwissenschaften, wie beispielsweise künstliche Intelligenz, mit leistungsstarken und effizienten Komponenten zusammenbringen, können Unternehmen ihre Produktivität erheblich steigern. Unter anderem wird mithilfe zustandsorientierter Überwachung und vorausschauender Wartung die Anlagenverfügbarkeit verbessert. Basierend auf diesen Ansätzen entwickelte Mitsubishi Electric seine neuesten Servosysteme. Mit ihnen will das Unternehmen seinen Kunden dabei helfen, Ausfallzeiten zu minimieren und gleichzeitig ihre Produktivität deutlich zu steigern.
Weitere Artikel, die Sie interessieren könnten
Impressum
Textquelle: Omni Ray
Bildquelle: Omni Ray
Redaktionelle Bearbeitung: Technik und Wissen
Informationen
Omni Ray
www.omniray.ch
Weitere Artikel
- #Antriebstechnik
- #Digitalisierung
- #Instandhaltung
- #Künstliche Intelligenz
- #Omni Ray
- #Servo
- #Simulation
Veröffentlicht am: